Hom-bialgebras and Comodule Algebras
نویسنده
چکیده
We construct a Hom-bialgebra M(2) representing the functor of 2 × 2-matrices on Hom-associative algebras. We also construct a Hom-algebra analogue of the affine plane and show that it is a comodule Hom-algebra over M(2) in a suitable sense.
منابع مشابه
Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.
For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of Hom-tensor relations have been st...
متن کاملThe Classical Hom-yang-baxter Equation and Hom-lie Bialgebras
Motivated by recent work on Hom-Lie algebras and the Hom-Yang-Baxter equation, we introduce a twisted generalization of the classical Yang-Baxter equation (CYBE), called the classical Hom-Yang-Baxter equation (CHYBE). We show how an arbitrary solution of the CYBE induces multiple infinite families of solutions of the CHYBE. We also introduce the closely related structure of Hom-Lie bialgebras, ...
متن کاملar X iv : 0 90 6 . 41 28 v 1 [ m at h - ph ] 2 2 Ju n 20 09 HOM - QUANTUM GROUPS I : QUASI - TRIANGULAR HOM - BIALGEBRAS
We introduce a Hom-type generalization of quantum groups, called quasi-triangular Hom-bialgebras. They are non-associative and non-coassociative analogues of Drinfel’d’s quasitriangular bialgebras, in which the non-(co)associativity is controlled by a twisting map. A family of quasi-triangular Hom-bialgebras can be constructed from any quasi-triangular bialgebra, such as Drinfel’d’s quantum env...
متن کاملModule and Comodule Categories - a Survey
The theory of modules over associative algebras and the theory of comodules for coassociative coalgebras were developed fairly independently during the last decades. In this survey we display an intimate connection between these areas by the notion of categories subgenerated by an object. After a review of the relevant techniques in categories of left modules, applications to the bimodule struc...
متن کاملBiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras
A BiHom-associative algebra is a (nonassociative) algebra A endowed with two commuting multiplicative linear maps α, β : A → A such that α(a)(bc) = (ab)β(c), for all a, b, c ∈ A. This concept arose in the study of algebras in so-called group Hom-categories. In this paper, we introduce as well BiHom-Lie algebras (also by using the categorical approach) and BiHom-bialgebras. We discuss these new ...
متن کامل